Standard-model prediction for direct CP-violation in kaon decays

Christopher Kelly (RBC & UKQCD Collaboration)

Parallel talk, "Brookhaven Forum 2015", BNL, USA October 8th 2015

RIKEN BNL Research Center

The RBC & UKQCD collaborations

<u>BNL and RBRC</u>	Luchang Jin	<u>Plymouth University</u>
	Bob Mawhinney	
Tomomi Ishikawa	Greg McGlynn	Nicolas Garron
Taku Izubuchi	David Murphy	
Chulwoo Jung	Daigian Zhang	
Christoph Lehner	1 0	University of Southampton
Meifeng Lin	University of Connecticut	
Taichi Kawanai		Jonathan Flynn
Christopher Kelly	Tom Blum	Tadeusz Janowski
Shigemi Ohta (KÉK)		Andreas Juettner
Amarjit Soni	Edinburgh University	Andrew Lawson
Sergey Syritsyn		Edwin Lizarazo
	Peter Boyle	Antonin Portelli
<u>CERN</u>	Luigi Deĺ Debbio	Chris Sachrajda
	Julien Frison	Francesco Sanfilippo
Marina Marinkovic	Richard Kenway	Matthew Spraggs
	Ava Khamseh	Tobias Tsang
<u>Columbia University</u>	Brian Pendleton	J
_	Oliver Witzel	
Ziyuan Bai	Azusa Yamaguchi	<u> York University (Toronto)</u>
Norman Christ		
Xu Feng		Renwick Hudspith

Motivation for studying K→ππ Decays

• Direct CPV first observed in late 90s at CERN and Fermilab in $K_0 \rightarrow \pi\pi$:

$$\eta_{00} = \frac{A(K_{\rm L} \to \pi^0 \pi^0)}{A(K_{\rm S} \to \pi^0 \pi^0)}, \qquad \eta_{+-} = \frac{A(K_{\rm L} \to \pi^+ \pi^-)}{A(K_{\rm S} \to \pi^+ \pi^-)}.$$

$${\rm Re}(\epsilon'/\epsilon) \approx \frac{1}{6} \left(1 - \left|\frac{\eta_{00}}{\eta_{\pm}}\right|^2\right) = 16.6(2.3) \times 10^{-4} \qquad {\rm (experiment)}$$
 measure of direct CPV measure of indirect CPV

• In terms of isospin states: $\Delta I=3/2$ decay to I=2 final state, amplitude A_2 $\Delta I=1/2$ decay to I=0 final state, amplitude A_0

$$A(K^0 \to \pi^+ \pi^-) = \sqrt{\frac{2}{3}} A_0 e^{i\delta_0} + \sqrt{\frac{1}{3}} A_2 e^{i\delta_2} ,$$

$$A(K^0 \to \pi^0 \pi^0) = \sqrt{\frac{2}{3}} A_0 e^{i\delta_0} - 2\sqrt{\frac{1}{3}} A_2 e^{i\delta_2} .$$

$$\bullet' = \frac{i\omega e^{i(\delta_2 - \delta_0)}}{\sqrt{2}} \left(\frac{\mathrm{Im} A_2}{\mathrm{Re} A_2} - \frac{\mathrm{Im} A_0}{\mathrm{Re} A_0} \right)$$

$$(\delta_{\mathrm{I}} \text{ are strong scattering phase shifts.})$$

• Small size of ε' makes it particularly sensitive to new direct-CPV introduced by most BSM models.

Overview of calculation

- Low-energy QCD interactions play an important role in kaon decays.
- Lattice QCD only ab initio, systematically improvable technique.
- At energy scales μ « $M_{_{W.}}$ $K \rightarrow \pi\pi$ decays use weak EFT:

$$H_W^{\Delta S=1} = \frac{G_F}{\sqrt{2}} V_{ud}^* V_{us} \sum_{j=1}^{10} [z_j(\mu) + \tau y_j(\mu)] Q_j$$

$$\tau = -\frac{V_{ts}^* V_{td}}{V_{us}^* V_{ud}} = 0.0014606 + 0.00060408i$$
 perturbative Wilson coeffs. Imaginary part solely responsible for CPV (everything else is pure-real)

LL finite-volume correction renormalization matrix (mixing)
$$A_{2/0} = F \frac{G_F}{\sqrt{2}} V_{ud} V_{us} \sum_{i=1}^{10} \sum_{j=1}^{7} \left[\left(z_i(\mu) + \tau y_i(\mu) \right) Z_{ij}^{\text{lat} \to \overline{\text{MS}}} M_j^{\frac{3}{2}/\frac{1}{2}, \text{lat}} \right],$$

$$M_j = \langle (\pi \pi)_I | Q_j | K \rangle \text{ (lattice)}$$

 Operators must be renormalized into same scheme as Wilson coeffs: Use RI-(S)MOM NPR and perturbatively match to MSbar at high scale.

Lattice Determination of A₂

[Phys.Rev. D91 (2015) 7, 074502]

- Separate lattice calculations for A₂ and A₀.
- RBC & UKQCD have been computing A₂ for a number of years.
- Most recently with 2+1f physical quark masses, physical kinematics and in the continuum limit.
- ~3% statistical error!
- 15% sys. error completely dominated by perturbative truncation of RI-SMOM → MSbar matching.
- Can be addressed straightforwardly by step-scaling to a higher μ or computing higher-order PT contributions.
- Lattice calculation of A₀ considerably more challenging topic for most of remainder of this talk.

Determination of A₀

arXiv:1505.07863 [hep-lat]

Matrix element calculation

- A_o obtained via neutral kaon decays $K^0 \to \pi^+\pi^-$ and $K^0 \to \pi^0\pi^0$
- 4 classes of diagram:

- Type 4 disconn. diagrams dominate noise.
- Use Trinity-style all-to-all (A2A) propagators:
 - 900 exact low-eigenmodes computed using Lanczos algorithm
 - Stochastic high-modes with full dilution of indices
- Allows us to perform all spatial and temporal translations to boost statistics.

Physical Kinematics

- Important to calculate with physical (energy-conserving) kinematics.
- With physical masses: $2 \times m_\pi \sim 270~{\rm MeV} \ll m_K \sim 500~{\rm MeV}$
- Requires moving pions!
- This is excited state of the $\pi\pi$ -system. Possibilities:
 - try to perform multi-state fits to very noisy data (esp. A₀ where there are disconn. diagrams)
 - modify boundary conditions to remove the ground-state
- Second approach optimal but technically challenging: must conserve isospin and apply momentum to both charged and neutral pions.
- Solution: Use G-parity BCs:

$$\hat{G} = \hat{C}e^{i\pi\hat{I}_y} : \hat{G}|\pi^{\pm}\rangle = -|\pi^{\pm}\rangle \quad \hat{G}|\pi^{0}\rangle = -|\pi^{0}\rangle$$

• As a boundary condition: (i=+, -, 0)

$$\pi^{i}(x+L) = \hat{G}\pi^{i}(x) = -\pi^{i}(x) \qquad |p| \in (\pi/L, 3\pi/L, 5\pi/L...)$$
(moving ground state)

Ensemble and state energies

- 32^3 x64 Mobius DWF ensemble with IDSDR gauge action at β =1.75. Coarse lattice spacing (a⁻¹=1.378(7) GeV) but large, (4.6 fm)³ box.
- G-parity BCs in 3 directions.
- Performed 216 independent measurements (4 MDTU sep.).
- Utilized:
 - USQCD 512-node BG/Q machine at BNL
 - DOE "Mira" BG/Q machines at ANL
 - STFC BG/Q "DiRAC" machines at Edinburgh, UK.

• Obtain close matching of kaon and $\pi\pi$ energies:

$$m_{K}$$
=490.6(2.4) MeV
$$E_{\pi\pi}(I=0) = 498(11) \text{ MeV}$$

$$E_{\pi\pi}(I=2) = 573.0(2.9) \text{ MeV}$$

$$E_{\pi}$$
=274.6(1.4) MeV $(m_{\pi} = 143.1(2.0) \text{ MeV})$

I=0 ππ energy

- Signal/noise deteriorates quickly due to vacuum contrib.

	ılt to deterr med both 1	-		0.39-	Ф Ф			т	Ī	Ţ	_
$\overline{t_{ m min}}$	$E_{\pi\pi}$	$E_{ m exc}$	χ^2/dof	$E_{ m eff}$	<u> </u>	$\overline{\Phi}$	Ţ	T ϕ	ф		
2	0.363(9)	1.04(17)	1.7(7)	0.37		1	Ϋ́				_
3	0.367(11)	1.27(73)	1.8(8)			Ι	I		(I)		
4	0.364(12)	0.86(39)	1.9(8)	0.35				I			-
$\overline{t_{ m min}}$	$E_{\pi\pi}$	${\chi^2/\mathrm{dof}}$			5 220					\perp	
5	0.375(6)	$\frac{7}{2.2(9)}$		0.33	$\delta_0 \sim 38^{\circ}$			ı	ı		
6	0.361(7)	1.6(7)	2% s	tat err!	0 2	4	,	6	8	10	
7	0.380(11)	0.9(7)					t				

- Our phase shift $\delta_0 = 23.8(4.9)(1.2)^{\circ}$ ~2.7 σ below conventional Roy equation determination of $\delta_0=38.0(1.3)^\circ$ [G.Colangelo, private communication]
- Possibly low statistics concealing delayed plateau start?
- Using 38° \rightarrow ~3% change in A₀: much smaller than other errs.
- For consistency we choose to use our lattice value.

Matrix element fits

[Dominant contribution to $Re(A_0)$]

[Dominant contribution to $Im(A_0)$]

- No statistically resolvable excited state dependence with $t_{min}(\pi \rightarrow Q) > 3$.
- Signal quickly decays: +40% stat. error between $t_{min}(\pi \rightarrow Q)$ =4 and 5!
- Use $t_{\min}(\pi \rightarrow Q) = 4$.
- Estimate 5% excited state systematic by comparing $\pi\pi(I=0)$ amplitude computed using one- and two-state fits.

Systematic errors

• Errors for each separate operator matrix element:

Description	Error	Description	Error
Finite lattice spacing	12%	Finite volume	7%
Wilson coefficients	12%	Excited states	$\leq 5\%$
Parametric errors	5%	Operator renormalization	15%
Unphysical kinematics	$\leq 3\%$	Lellouch-Lüscher factor	11%
Total (added in quadra	ature)		27%

- 15% ren. error due to one-loop PT truncation and low, 1.53 GeV matching scale. (Est. by comparing two different RI/SMOM intermediate schemes.)
- 12% Wilson coefficient error large for same reason. (Est. from difference between LO and NLO.)
- 12% discretization error due to coarse lattice spacing. (Est. from A₂ calculations.)

Results for A₀

$${
m Re}(A_0)=4.66(1.00)_{
m stat}(1.21)_{
m sys} imes 10^{-7}~{
m GeV}$$
 (This work) ${
m Re}(A_0)=3.3201(18) imes 10^{-7}~{
m GeV}$ (Experiment)

- Good agreement for Re(A₀) serves as test for method.
- Expt far more precise. Physics dominated by tree-level current-current diagrams hence unlikely to receive large BSM contributions.
- Use expt. for computing ϵ '.

$$Im(A_0) = -1.90(1.23)_{stat}(1.04)_{sys} \times 10^{-11} GeV$$
 (This work)

• ~85% total error on the predicted $Im(A_0)$ due to strong cancellation between dominant Q_4 and Q_6 contributions:

$$\Delta[\operatorname{Im}(A_0), Q_4] = 1.82(0.62)(0.32) \times 10^{-11}$$

$$\Delta[\operatorname{Im}(A_0), Q_6] = -3.57(0.91)(0.24) \times 10^{-11}$$

despite only 40% and 25% respective errors for the matrix elements.

Results for ε' and concluding remarks

Results for ε'

- Re(A₀) and Re(A₂) from expt.
- Lattice values for Im(A₀), Im(A₂) and the phase shifts,

$$\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) = \operatorname{Re}\left\{\frac{i\omega e^{i(\delta_2 - \delta_0)}}{\sqrt{2}\varepsilon} \left[\frac{\operatorname{Im} A_2}{\operatorname{Re} A_2} - \frac{\operatorname{Im} A_0}{\operatorname{Re} A_0}\right]\right\}$$

$$= 1.38(5.15)(4.43) \times 10^{-4}, \quad \text{(this work)}$$

$$16.6(2.3) \times 10^{-4} \quad \text{(experiment)}$$

• Find discrepancy between lattice and experiment at the 2.1σ level.

Conclusions and Outlook

- First direct computation of A₀ with controllable errors performed.
- Measured Re(A₀) in good agreement with experiment.
- 85% total error on $Im(A_0)$ despite 25% and 40% errors on dominant Q_6 and Q_4 contributions resp., due to strong mutual cancellation.
- On final result, stat. error currently dominant.
- Sys. errors dominated by perturbative truncation errors on the renormalization and Wilson coeffs due to low, 1.53 GeV scale.
- Currently computing NPR running to higher energies in order to reduce this systematic.
- Total error on Re(ε'/ε) is ~3x the experimental error, and we observe a 2.1σ discrepancy. Strong motivation for continued study!
- Hope to achieve O(10%) errors on Re(ε'/ε) on a timescale of ~5 years.
- We hope these results with spur new efforts in the experimental community to reduce the current 15% error on the experimental number.

Thank you!